BRIEF COMMUNICATION

The Concentration of Surface V=O Species on Oxidized Vanadium Oxide Catalysts

AKIRA MIYAMOTO, ATSUSHI HATTORI, AND YUICHI MURAKAMI

Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

Received September 29, 1982

On the basis of an oxidized surface state model of vanadium oxides, Andersson has theoretically shown that the concentration of surface V=O species on oxidized V₆O₁₃ or V₂O₄ catalyst is higher than that on V₂O₅ catalyst (1). The purpose of this study was to confirm the validity of this inference experimentally.

V₂O₅ was prepared by the thermal decomposition of ammonium metavanadate at 773 K for 3 hr in a stream of O₂ (2–4). V₆O₁₃ and V₂O₃ were prepared by the reduction of the V₂O₅ in a stream of H₂ for 1 hr at 703 and 763 K, respectively (2, 3). The stoichiometries were confirmed by means of a Rigaku D-3F x-ray diffractometer. The number of surface V=O species (L) was determined by using the rectangular pulse technique described previously (4, 5). This technique is based on the following reactions:

$$V = O + NO + NH_3 \rightarrow V - OH + N_2 + H_2O, \quad (1)$$

$$V-OH \xrightarrow{\text{bulk } V = 0} V = O + \frac{1}{2}H_2O, \quad (2)$$

together with the introduction of NO and NH_3 mixture in a rectangular pulse shape

onto the preoxidized catalyst and detection of the concentration profile of N₂ produced by Eq. (1). The separation of N_2 due to the initial surface V=O species from that due to the V=O species reproduced by Eq. (2) leads to the determination of L, whereas the analysis of the concentration profile of N_2 due to the V=O species formed in Eq. (2) gives information on the bulk V=0 species. The preoxidation of the catalyst was conducted in a stream of O₂ under conditions shown in Table I. The BET surface area of the catalyst (S_{BET}) was determined by using a conventional flow type apparatus using N₂ as an adsorbate. XPS spectra of the preoxidized catalysts were obtained Shimazu ESCA 750 photoelectron spectrometer.

On the basis of the XPS spectra of V_6O_{13} , V_2O_3 , and V_2O_5 , the vanadium ion on the catalyst surface was found to be in the highest oxidation state, V^{5+} , for all catalysts. This agrees with the surface model adopted by Andersson, that an oxidized vanadium oxide forms V^{5+} ions on its surface while the bulk oxidation state decreases with decreasing O/V ratio of the oxide (1). Figure 1 shows examples of concentration profiles of N₂ produced by Eq. (1) for oxidized

0022-4596/83 \$3.00 Copyright © 1983 by Academic Press, Inc. All rights of reproduction in any form reserved.

TABLE I Results of the Number of Surface V=O Species (L), the BET Surface Area (S_{BET}), and the Concentration of Surface V=O Species (C)

Catalyst	Preoxidation ^a				
	Temp (K)	Time (min)	L (µmole/g)	S _{BET} (m²/g)	C (µmole/m²)
V2O5 ^b	773	15	22	5.4	4.1
V ₆ O ₁₃ ^c	549	1	74	9.0	8.2
	583	1	67	9.0	7.4
	570	5	95	9.0	10.6
	548	5	91	9.0	10. i
	558	10	94	9.0	10.4
V ₂ O ₃ ¢	573	1	33	9.4	3.5
	574	5	70	9.4	7.4
	568	5	69	9.4	7.3
	568	10	67	9.4	7.1

^a The flow rate of O₂ was 125 cm³-STP/min.

^b The value of L did not change with the preoxidation condition.

 c The concentration of the surface V=O species on the nonoxidized V₆O₁₃ or V₂O₃ was much lower than that on V₂O₅: 0.8 μ mole/m² for V₆O₁₃ and 0 μ mole/m² for V₂O₃.

 V_2O_5 , V_6O_{13} , and V_2O_3 catalysts measured under various preoxidation conditions. As shown, the profile was composed of two parts—the initial sharp N_2 and the tailing

 N_2 . As precisely described in previous papers (4, 5), the initial sharp N₂ can be separated from the tailing N_2 by the dotted line shown in Fig. 1, and the number of surface V=O species is given by the number of the initial sharp N_2 . Table I shows results of L and S_{BET} together with the concentration of surface V=O species (C). Here, C is defined as L/S_{BET} . As shown in Table I, C for the oxidized V_6O_{13} and V_2O_3 catalysts was considerably higher than C for the V_2O_5 . Although the results support the validity of the theoretical inference obtained by Andersson (1), the following points should be noted with respect to the concentration profiles of N_2 . As shown in Fig. 1, the concentration of N_2 at the tailing part for the V_6O_{13} catalyst was much lower than that for the V_2O_5 catalyst. Similarly the tailing of N_2 was barely observed for the oxidized V_2O_3 catalyst. According to Eqs. (1) and (2) these results indicate that the reoxidation of the surface V-OH species by the bulk V=O species scarcely takes place for V_6O_{13} or V_2O_3 . This is reasonable since by using infrared spectroscopy (2, 3) the amount of

FIG. 1. Examples of concentration profiles of N₂ produced by the reaction of the rectangular pulse of NO and NH₃ mixture with preoxidized V₂O₅ (a) and V₆O₁₃ (b) catalysts. Preoxidation condition: 773 K for 15 min for V₂O₅ and 583 K for 1 min for V₆O₁₃. Condition of the rectangular pulse experiment: 567 K for V₂O₅ and 583 K for V₆O₁₃; other experimental variables were the same as those employed in previous studies (4, 5).

bulk V=O species for V_6O_{13} or V_2O_3 has been found to be much smaller than that for V_2O_5 .

In conclusion, the concentration of surface V=O species on the oxidized V_6O_{13} or V_2O_3 catalyst was found to be significantly higher than that on the V_2O_5 catalyst. This provides experimental evidence for the validity of the oxidized surface state model proposed by Andersson (1).

References

- 1. A. ANDERSSON, J. Solid State Chem. 42, 263 (1982).
- S. HASEGAWA, N. MIYAZAWA, Y. KITANO, AND T. KAWAGUCHI, Nippon Kagaku Kaishi, 246 (1975).
- 3. A. MIYAMOTI, Y. YAMAZAKI, AND Y. MURAKAMI, Nippon Kagaku Kaishi, 619 (1977).
- A. MIYAMOTO, Y. YAMAZAKI, M. INOMATA, AND Y. MURAKAMI, J. Phys. Chem. 85, 2366 (1981).
- M. INOMATA, A. MIYAMOTO, AND Y. MURAKAMI, J. Phys. Chem. 85, 2372 (1981).